

Lawrence Berkeley National Laboratory

Vector Boson Scattering measurements using the ATLAS detector at the LHC

Simone Pagan Griso

Lawrence Berkeley National Lab.

RPM, LBNL April 3rd, 2014

Outline

- Why studying vector boson scattering (VBS) at the LHC?
- Experimental challenge
- First evidence of W[±]W[±]jj

- Future prospects
- Conclusions

Electroweak sector of the Standard Model

Electroweak sector of the Standard Model

Electroweak sector of the Standard Model

Higgs couplings measurements

- Couplings to vector bosons measured with 18-30% accuracy
 - expect ~10-20% in the next Runs of LHC
- Electro-weak symmetry breaking can also be explored in other complementary ways

VBS and the Higgs sector

W_LW_L → W_LW_L scattering violates unitarity (with no Higgs) ~ TeV

- gauge self-coupling cancels E⁴ dependency, E² left
- SM Higgs boson cancels exactly the remaining E² dependency

VBS and quartic gauge couplings

- LEP: e⁺e⁻ → ννγ, e⁺e⁻ → W⁺W⁻γ; consistent with ISR/FSR contribution
 - Expected contribution from "WW-fusion" ~ 17% @ $s^{1/2}$ =200 GeV

L3: http://arxiv.org/abs/hep-ex/0111029

OPAL: http://arxiv.org/abs/hep-ex/0402021

VBS and quartic gauge couplings

- LEP: e⁺e⁻ → ννγ, e⁺e⁻ → W⁺W⁻γ; consistent with ISR/FSR contribution
- CMS: $pp \rightarrow p^{(*)} W^+ W^- p^{(*)}$ [JHEP 07 (2013) 216]
 - eμ decay channel,
 - No fragmentation tracks
 - Signal at ~1-2σ
 - Challenging to repeat at 8 TeV due to larger pile-up (but feasible?!)

VBS and quartic gauge couplings

- LEP: $e^+e^- \rightarrow vv\gamma$, $e^+e^- \rightarrow W^+W^-\gamma$; consistent with ISR/FSR contribution
- CMS: $pp \rightarrow p^{(*)} W^+ W^- p^{(*)}$ [JHEP 07 (2013) 216]
- Quartic gauge couplings also probed with triple vector boson production
 - LEP (WWγ), consistent with ISR/FSR
 - LHC (recent WVγ result by CMS)
 - sensitivity about $3.4x\sigma_{\text{SM}}$

Overall, no direct evidence of a process involving four vector bosons vertex

VBS at the LHC: VVjj (V=W,Z)

- Electroweak production (α_{EW}^{4} at LO)
 - VBS not gauge invariant separately (e.g. Phys.Rev.D 74, 073010 (2006))

	σ (pb) all diagrams	σ (pb) WW diagrams	Ratio of WW/all diagrams
Unitary gauge	8.50×10^{-3}	$6.5 \\ 0.221 \\ 2.0 \times 10^{-2}$	765
Feynman gauge	8.50×10^{-3}		26
Axial gauge	8.50×10^{-3}		2.3

Only makes sense to study the whole electro-weak production!

VBS at the LHC: VVjj (V=W,Z)

• Same final state: Strong production $(\alpha_s^2 \alpha_{EW}^2)$ at LO)

Final state	Process	VVjj-ewk	VVjj-strong	Ratio ewk:strong
$-\ell^{\pm} u\ell'^{\pm} u'$ jj	$W^{\pm}W^{\pm}$	19.5 fb	18.8 fb	1:1
$\ell^{\pm} u \ell'^{\mp} u'$ jj	$W^{\pm}W^{\mp}+ZZ$	93.7 fb	3192 fb	1:30
$\ell^{\pm}\ell^{\mp}\ell'^{\pm} u'jj$	$W^{\pm}Z$	30.2 fb	687 fb	1:20
$\ell^{\pm}\ell^{\mp}\ell'^{\pm}\ell'^{\mp}$	ZZ	1.5 fb	100 fb	1:70

SHERPA, LO at $\sqrt{s}=8$ TeV. $p_T(\ell)>5$ GeV, $p_T(j)>15$ GeV, $m(\ell\ell)>4$ GeV.

- W[±]W[±] j j : the golden channel for favorable sig/bkg contribution
 - only an handful of events expected after selections!

Outline

- Why studying vector boson scattering (VBS) at the LHC?
- Experimental challenge
- First evidence of W[±]W[±]jj
- Future prospects
- Conclusions

the Large Hadron Collider

Last stage of accelerator complex at CERN (protons, Pb ions)

CMS Performance up to date - protons up to 4 TeV per beam ALICE LHCb TT40 TT41 - 11245.5 Hz neutrinos revolution frequency TT10 TT60 - up to 1368 AD TT2 BOOSTER colliding bunches ISOLDE (11 "trains") East Area 1959 (628 m) - 50ns bunch spacing LINAC 2 neutrons ▶ p (proton) ▶ ion ▶ neutrons ▶ p̄ (antiproton) → → → proton/antiproton conversion → neutrinos → electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice
LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

the ATLAS detector

Forward Calorimeters

End Cap Toroid

Calorimeters

Central, EndCap ($|\eta| < 3.2$) Forward $(3.2 < |\eta| < 4.9)$

Tracking system

 $|\eta| < 2.5$ Si Pixels, Strips, Transition-Radiation Tracker 2T magnetic field

Three-level triggering system Output rate ~400 Hz

Barrel Toroid

Muon Detectors

Inner Detector

Electromagnetic Calorimeters

Solenoid

Hadronic Calorimeters

Single e, μ triggers un-prescaled with p_{τ} >~ 24 GeV

Shielding

Luminosity and pile-up

- Delivered integrated luminosity up to 28.3fb⁻¹
 - $-22.8 \text{ fb}^{-1} \text{ @ } \text{s}^{1/2} = 8 \text{ TeV}$

$$<\mu> = \frac{L \cdot \sigma_{\text{inel.}}}{N_{\text{bunch}} \cdot f_{\text{LHC}}}$$

- Single sub-detectors > 99% efficient, ~90% of delivered for analysis
- Challenging conditions for experiments (L up to ~7.7·10³³ cm⁻²s⁻¹)
 - Mean number of p-p interactions per crossing up to ~40

Inner Tracking Detector (ID)

- Charged particles trajectories, p_⊤ > 400 MeV
- Vertex reconstruction
- b-tagging in jets
- particle identification 6.2m

Pixel detector

80M silicon pixels, 50x400μm² (90%) 3 barrels and 2x3 end-caps <hits/track> ~ 3

Semiconductor Tracker

6.3M silicon strips, 80µm pitch 4 barrels and 2x9 end-caps <hits/track> ~ 8

Pile-up as seen by ID sub-detectors

- Detector occupancy well modeled by simulation
- Available number of measurements per track stable against increased occupancy

Data 2011

- TRT Barrel, highest occupancy
- TRT Endcap, highest occupancy
- TRT Endcap, lowest occupancy
- TRT Barrel, lowest occupancy
- SCT B3, mean occupancy
- SCT B4, mean occupancy
- SCT B5, mean occupancy
- SCT B6, mean occupancy
- Pixel B-Layer, mean occupancy

ATLAS Preliminary

20

30

√s=7 TeV

- Pixel Layer 1, mean occupancy
 - Pixel Layer 2, mean occupancy

Data 2011, < u>=29

Data 2011, <u>=32

50

Number of TRT Hits

Mitigating pile-up effects

Combinatorial fake tracks increase with

Primary vertex reconstruction

- Iterative algorithm optimized for precision of position measurement
- Quality requirement if input tracks re-optimized for 2012 data taking
 - Tighter track selection for vertex reconstruction reduces fakes with similar (or improved) efficiency at high pile-up

Distinguishing pile-up interactions

Interaction region (~Gaussian):

Transverse size (σ): 12-16 μ m

Longitudinal size (σ): 45-50 mm

[average 2012 data]

Transverse size << average vertex resolution Distinguish interactions only along z

Distinguishing nearby interactions

- Resolving nearby interaction needs to compromise between:
- efficiency of reconstructing distinct vertices
- probability of "splitting" a single interaction into two vertices (dangerous → kept << 1%)
- Loss of efficiency for nearby interactions manifest as non-linear behavior of $< N_{VERTEX} > vs \mu$ (μ determined by independent luminosity detectors)

Why is that important?

- Pile-up dependent corrections
 - e.g. subtraction of extra energy in leptons isolation cones
- Iuminosity monitor/measurement

Pile-up in jets

Uncorrected

 $160 \le p_{_{T}}^{true} < 320 \text{ GeV}$

- Contributes to energy of reconstructed jets (~0.5 GeV / vertex)
- Jets from pile-up interactions
 - Use reconstructed tracks to match jets to the hard-scattering primary vertex

Measuring rare Standard Model processes

Electroweak Zjj production

- Milestone towards VBS measurements
- Finale state: two opposite charge leptons (e, μ) and two jets
- Low jet activity for EWK
- Very small top, diboson residual background (2%)

arXiv:1401.7610 (submitted to JHEP)

Results

- Analyzed 20.3fb⁻¹ of data @ $s^{1/2} = 8 \text{ TeV}$
- Observation of electroweak Zjj production at hadron colliders (background-only excluded at > 5σ)

Systematic uncertainties

- Jet energy scale and resolution dominant at high ∆y(jj)
- Forward region dominated by jet η response dependence studied using di-jet events p_T balance (+ other in-situ techniques)
- Theoretical modeling also larger than statistical error

Outline

- Why studying vector boson scattering (VBS) at the LHC?
- Experimental challenge
- First evidence of W[±]W[±]jj
- Future prospects
- Conclusions

Analysis strategy

- Analyzed 20.3 fb⁻¹ of p-p data @ s^{1/2} = 8 TeV (2012 dataset)
- Target W leptonic decays: $W \rightarrow I\nu$, $I = e,\mu$
 - Hadronic modes: large W+jets and multi-jets background
- Signature (three final state channels): e[±]e[±]jj, e[±]μ[±]jj, μ[±]μ[±]jj
 - Trigger with single electron or muon
- Simple counting experiment after selections optimized for best

cross section measurement error

Basic selections

Two same-charge leptons

$$p_{\rm T}(\ell) > 25 \ {\rm GeV}, \ |\eta| < 2.4$$

At least two jets

$$p_{\rm T}(j) > 30 \; {\rm GeV}, |\eta| < 4.5$$
 $E_{\rm T} > 40 \; {\rm GeV}$

Sample composition and selections

Prompt lepton background

- mainly WZ/γ*, ZZ
- reduced requiring <u>no third lepton</u> with looser ID requirement and $p_T > 6(7)$ GeV for $\mu(e)$

Asym. conversions $(\gamma \rightarrow ee)$

- Wγ, lepton bremsstrahlung (mostly Drell-Yan, top)
- affects mostly ee channel
- |m(ee) m(Z)| > 10 GeV

Signal regions and goals

- $m(jj) > 500 \text{ GeV} \rightarrow \text{Inclusive signal region}$
 - Measure W[±]W[±]jj production cross section (electroweak+strong)
 - Expected SM $\sigma^{fid}(WWjj) = 1.52 \pm 0.11$ fb
- In addition, require |∆y(jj)| > 2.4 → VBS signal region
 - Measure electroweak WWjj (strong WWjj as background)
 - Expected SM σ^{fid} (WWjj-ewk) = 0.95 ± 0.06 fb

Prompt leptons background

- WZ/ γ^* +jets one lepton out of acceptance or not reconstructed
 - About 30% from off-shell Z or γ^* after selections
 - Offshell W and W → Illv decays (Z radiation) suppressed
- Estimated using simulation: total theory uncertainty ~14%
 - could be reduced with parton-shower interface for NLO calculation

Strong WZ/y* production

75% of all prompt-background arXiv:hep-ph/0701105

Electroweak WZ/γ* production

15% of all prompt-background arXiv:1305.1623

Prompt leptons background

- ZZ+jets, tt+W/Z, tZj contribute together less than 10%
- Test in control region:
 - 3-leptons: test jets modeling
 - lower jet multiplicities: test lepton efficiency modeling

Tri-lepton				
Channel	Expected	Observed	$\frac{(Exp-Obs)}{\sigma(stat+syst)}$	
ee $+\ell$	36±6	40	-0.5	
$e\mu + \ell$	110±18	104	0.3	
$\mu\mu + \ell$	60 ± 10	48	0.9	

Background from conversions

- Two main contributors
 - Z/γ*+jets, tt, di-boson producing opposite-charge leptons with charge "mis-measured" → data-driven
 - Wyjj production \rightarrow simulation

Both share the same dominant mechanism for passing analysis

selections: γ conversion

× = not reconstructed

 Conversion rate depends on material in the (inner) detector

Opposite-charge leptons

- Measure charge mis-measurement rate using Z → ee
- Select data with all selections but oppositely charged leptons
- Weight events based on charge mis-measurement rate
- Test in control region with low jet multiplicity

	$\leq \! 1$ jet		
Channel	Expected	Observed	$\frac{(Exp-Obs)}{\sigma(stat+syst)}$
ee	278±28	288	-0.3
$e\mu$	288±42	328	-0.9
$\mu\mu$	88±14	101	-0.8

Constraining material in the ID

- For estimates based on simulation need to assess material modeling
- Careful estimation of material established in the beginning...

Sub-detector	Measured weight (kg)	Weight in simulation (kg)
SCT barrel	201±20	222
TRT barrel	707±20	700
SCT+TRT	883±20	922
barrel		

- ...and refined with collision data
 - Particularly important for **local** mis-modeling in simulation
- Methods accurate to 5-10% of X₀
- ~1.8M volumes in GEANT simulation

Other non-prompt leptons

Mainly from (b-)hadrons decays (e.g. tt)

- Use sidebands in lepton isolation to extrapolate contribution in signal regions
- Extrapolation factor measured in di-jet sample
- sample-dependence systematic from simulation

- Total uncertainty 40-50%
- Test modeling in fake lepton enriched sample
 - Invert b-jet veto

$b{ m -tagged}$						
Channel	Expected	Observed	$\frac{(Exp-Obs)}{\sigma(stat+syst)}$			
ee	40±6	46	-0.7			
$e\mu$	75±13	82	-0.4			
$\mu\mu$	25±7	36	-1.3			

Summary of systematics

Summary of the effect of main systematic uncertainties on total background/signal expectation

Relative systematic uncertainty (%)					
Source	Total background	Total signal			
Jet uncertainties	11-13	6			
Theory	6-11	6-7			
Others	10-13	4-6			
Total systematic	18-20	10-11			

- Dominant experimental systematic from Jet Energy scale and resolution
 - Lepton reconstruction efficiencies well under control
- Large uncertainties on non-prompt leptons backgrounds does not play a dominant role since their expected contribution is small

Summary of systematics

Summary of the effect of main systematic uncertainties on total background/signal expectation

Relative systematic uncertainty (%)					
Source		Total signal			
Jet uncertainties	11-13	6			
Theory	6-11	6-7			
Others	10-13	4-6			
Total systematic	18-20	10-11			

Theory uncertainties important

- Dominated by WZ/ γ^* uncertainty for backgrounds
 - Parton-shower uncertainties important: lacking a NLO calculation which can be interfaced to parton-shower MC

Summary of systematics

Summary of the effect of main systematic uncertainties on total background/signal expectation

Relative systematic uncertainty (%)					
Source	Total background	Total signal			
Jet uncertainties	11-13	6			
Theory	6-11	6-7			
Others	10-13	4-6			
Total systematic	18-20	10-11			

- Expected statistical uncertainty on cross section measurement: 30-40%
- Systematics to play a much more important role in the (not so far) future

Signal regions

Observed yields consistent with SM signal expectation

	Inclusive Region			VBS Region		
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Prompt	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5
Conversions	3.2 ± 0.7	2.4 ± 0.8	_	2.1 ± 0.5	1.9 ± 0.7	_
Other non-prompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19
$W^{\pm}W^{\pm}jj$ Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08
W [±] W [±] jj Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total background	6.8 ± 1.2	10.3 ± 2.0	3.0 ± 0.6	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5
Total signal	4.0 ± 0.4	11.4 ± 1.2	6.3 ± 0.7	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8
Data	12	26	12	6	18	10

- Observed (expected) significance over background-only hypothesis:
 - 4.5σ (3.4σ) for electroweak+strong W[±]W[±]jj in Inclusive Region
 - 3.6σ (2.8σ) for electroweak W[±]W[±]jj in VBS Region
- First evidence of electroweak W[±]W[±]jj production

Signal region kinematics

Kinematics of excess consistent with SM expectation

Data event with largest $\Delta y(jj)$ (and m(jj))

Cross section measurement

 Measure fiducial cross sections in a phase space that closely mimic experimental selections (= fiducial regions)

$$\sigma^{\text{fid.}} = \frac{N^{\text{obs.}} - N^{\text{bkg}}}{\mathcal{L} \cdot \epsilon}$$

$$\epsilon = \frac{N_{\rm signal\ region,\ reco-level}}{N_{\rm fiducial\ region,\ particle-level}}$$

Estimated using full detector simulation

Trigger efficiency
Object reconstruction efficiency
Migration in/out of fiducial phase space

- Fiducial regions includes W decay branching ratios to ev, μν
 - Efficiency ε also corrects for τ → e,μ+X contribution (~10% of expected signal)
- Cross section measured for each channel and combined

First W±W±jj cross section measurement

Measurement

SM Expectation

$$\sigma_{W^{\pm}W^{\pm}jj}^{\text{fid, Inclusive Region}}$$

$$2.1 \pm 0.4$$

$$2.1 \pm 0.5 ({\rm stat}) \pm 0.3 ({\rm syst.})$$
 fb

$$1.52 \pm 0.11 \text{ fb}$$

$$\sigma_{W^{\pm}W^{\pm}jj}^{\text{fid, VBS Region}}$$

$$1.3 \pm 0.4 ({\rm stat}) \pm 0.2 ({\rm syst.}) \ {\rm fb}$$

$$0.95 \pm 0.06 \text{ fb}$$

anomalous Quartic Gauge Coupligs

- Using electroweak W[±]W[±]jj fiducial cross section in VBS phase space to constrain aQGC
- Effective field theory approach

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{\mathrm{dimension d}} \sum_{i} \frac{c_i^{(\mathrm{d})}}{\Lambda^{\mathrm{d}-4}} \mathcal{O}_i^{(\mathrm{d})}$$

- Valid below energy scale Λ
- Some d=8 operators can be mapped to d=4, d=6 ones

d=4	d=6	d=8	
WWWW, WWZZ	$WWZ\gamma,WW\gamma\gamma$	all VVVV	
Chiral Lagrangian	"non-linear" formalism	"linear" formalism	
α_4, α_5	a_0^{\prime} / Λ^2 , a_C^{\prime} / Λ^2	$f_{S,i}$ / Λ^4 , $f_{M,i}$ / Λ^4 , $f_{T,i}$ / Λ^4	
Appelquist et al. (1980)	Belanger et al. (1992)	Eboli et al. (2006)	

aQGC results

1-D observed 95% C.L. limits:

$$-0.14 < \alpha_{A} < 0.16 (\alpha_{5} = 0)$$

$$-0.23 < \alpha_{5} < 0.24 (\alpha_{4}=0)$$

 Simplified-model interpretation (arXiv:1307.8170) relates to energy scale of hypothetical contributing resonance:

$$\Lambda = \frac{v}{\sqrt{\alpha_i}} \approx 500 - 650 \text{ GeV}$$

Outline

- Why studying vector boson scattering (VBS) at the LHC?
- Experimental challenge
- First evidence of W[±]W[±]jj
- Future prospects
- Conclusions

Future prospects

3rd April 2014

W[±]W[±]jj projections

- Sensitivity for 300/fb and 3000/fb (Snowmass studies)
 - simplified truth-based analysis [ATLAS-PHYS-PUB-2013-006]

Selection	Current	Projections
Two leptons $p_T > [\text{GeV}]$	25	25
3rd lepton veto, $p_T > [{\sf GeV}]$	6(7)	25
Two jets, $p_T > [\text{GeV}]$	30	50
m(jj) > [GeV]	500	1000
$ \Delta y(jj) >$	2.4	_

- Optimal jet p_T cut is tighter to reject (larger) pile-up contribution and because of stronger background rejection (good for larger statistics)
- Very rough background model: only accounts WZ/ γ^* (scaled by 2)
- Results based on template fit of m(IIjj) observable

W[±]W[±]jj: projection results

• Results can be interpreted in simplified models

arXiv:1310.6708, arXiv:hep-ph/0606118

95% C.L. limits on broad resonance mass $(\Gamma \sim M)$					
Type of resonance	8 TeV, $20/fb$	14 TeV, 300/fb	14 TeV, $3000/fb$		
scalar	0.7 TeV	2.0 TeV	3.3 TeV		
vector	0.9 TeV	2.6 TeV	4.4 TeV		
tensor	1.2 TeV	3.5 TeV	6.0 TeV		

using new results!

snowmass projections (arXiv:1310.6708)

- Both energy and luminosity increase play important roles
 - about a factor of 4 increase in cross section for both signal and main background from 8 TeV to 14 TeV

Conclusions

- Vector boson scattering measurements offer an unique probe of quartic gauge interactions and Higgs sector
 - complementary to direct Higgs couplings measurements
 - Usually very rare processes, difficult to observe
- ATLAS has just reported the <u>first evidence of</u> <u>electroweak production of W[±]W[±]jj</u>
 - milestone for a complete VBS program
 - First challenging probe of massive VVVV vertex
 - Experimental proof we can isolate these processes and keep backgrounds under control
- Looking forward to fully explore the physics behind VBS in the next years of operations of the LHC!

BACKUP

Study of quartic gauge couplings

- Triple boson production (VVV)
 - **LEP**: $e^+e^- \rightarrow W^+W^-\gamma$

Results consistent with ISR/FSR contribution (~96% @ s^{1/2}= 200 GeV)

- **LHC** (CMS): pp \rightarrow W V γ (V = W, Z)
 - 19.3/fb of 8 TeV data
 - Sensitive to ~3.4xSM at 95%C.L.
 CMS-PAS-SMP-13-009
- **LHC**: VH(→VV), V=W,Z
 - small contribution in Higgs results

ete → vyy, OPAL: Mrec

Inner detector quadrant

(simplified) charged particle reconstruction

Pre-processing of measurements (hits)

→ sub-detector dependent

track finder:

- → Inside-out combinatorial
 - → start from pixel,SCT
 - \rightarrow extend to TRT
- → Recover TRT → Silicon and TRT standalone for secondaries

Precise track fit/selection

- → accounts for multiple scattering, energy loss
- → select best track candidates (hits, holes,..)

Primary vertex:

- → Iterative finding
- → Optimized for best position measurement
- → Robust agains outliers

Secondary vertex:

- → Photon conversions
- → b-hadrons decay
- → Explicit decay chains

Vertex Z resolution

Distinguishing pile-up interactions

Interaction region (~Gaussian):

Transverse size (σ): 12-16μm Longitudinal size (σ): 45-50mm

Transverse size << average vertex resolution Distinguish interactions only along z

Track multiplicity, minimum-bias @ 8 TeV

Lepton reconstruction performance

- Lepton reconstruction and identification efficiency also tuned to be robust against pile-up
 - residual dependence well reproduced in simulation

Jet energy corrections

Figure 2: Overview of the ATLAS jet calibration scheme used for the 2011 dataset. The pile-up, absolute JES and the residual *in situ* corrections calibrate the scale of the jet, while the origin and the η corrections affect the direction of the jet.

ATLAS-CONF-2013-004, https://cds.cern.ch/record/1509552

V+jets measurements

 W/Z+jets measurements challenging theorists to provide accurate descriptions and experimentalists to understand detector performance even in busy environments

VBF Z - Event selections

				T		
Object	baseline	high-mass	search	control	$\mathit{high-p_{\mathrm{T}}}$	
Leptons		$ \eta^\ell $	$< 2.47, p_{\mathrm{T}}^{\ell} > 25$ (${ m GeV}$		
Dilepton pair		8	$1 \le m_{\ell\ell} \le 101 \text{ Ge}$	V		
	_	$ \qquad \qquad p_{\mathrm{T}}^{\ell\ell} > 20 \mathrm{GeV}$				
Jets	$ y^j < 4.4, \Delta R_{j,\ell} \ge 0.3$					
		$p_{\mathrm{T}}^{j1} > 55~\mathrm{GeV}$				
		$p_{\mathrm{T}}^{j2} > 45 \; \mathrm{GeV}$ $p_{\mathrm{T}}^{j2} > 75 \; \mathrm{GeV}$				
Dijet system	_	$- m_{jj} > 1 \text{ TeV} \qquad m_{jj} > 250 \text{ GeV}$				
Interval jets			$N_{ m jet}=0$	$N_{ m jet} \geq 1$	_	
Zjj system	_		$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$	$p_{\mathrm{T}}^{\mathrm{balance,3}} < 0.15$		

VBF Z - Background control region

- Probe radiation between tag jets (strong prod.)
- Check and correct strong Z production requiring jet activity between the two tagged jets

Signal expectation

- NLO (in QCD) calculation available for electro-weak and strong W[±]W[±]jj production
 - VBFNLO and PowhegBox → interfaced with Pythia8 for parton shower, hadronization and underlying event
- Constructive Interference of 7-12% (Sherpa, LO study)
- Main systematic from scale/PDF variations and parton shower uncertainties

Expected cross section after selections that closely mimic experimental event selections:

fiducial x-section [fb]	Inclusive region	VBS region
Electroweak W±W±jj	1.00 ± 0.06	0.88 ± 0.05
Strong W±W±jj	0.35 ± 0.05	0.098 ± 0.018
Interference	0.16 ± 0.08	0.07 ± 0.04
Total Signal	1.52 ± 0.11 fb	0.95 ± 0.06 fb

Summary of CR and low-mjj CR

Contro	l Region	Tri-lepton	≤ 1 jet	b-tagged	Low m _{jj}
$e^{\pm}e^{\pm}$	exp.	36 ± 6	278 ± 28	40 ± 6	76 ± 9
	data	40	288	46	78
$e^{\pm}\mu^{\pm}$	exp.	110 ± 18	288 ± 42	75 ± 13	127 ± 16
	data	104	328	82	120
$\mu^{\pm}\mu^{\pm}$	exp.	60 ± 10	88 ± 14	25 ± 7	40 ± 6
	data	48	101	36	30

Invert m(jj) selection to test similar admixture of backgrounds

Signal region yields

	Inclusive Region			VBS Region		
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Prompt	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5
Conversions	3.2 ± 0.7	2.4 ± 0.8	_	2.1 ± 0.5	1.9 ± 0.7	_
Other non-prompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19
$W^{\pm}W^{\pm}jj$ Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08
$W^{\pm}W^{\pm}jj$ Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total background	6.8 ± 1.2	10.3 ± 2.0	3.0 ± 0.6	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5
Total signal	4.0 ± 0.4	11.4 ± 1.2	6.3 ± 0.7	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8
Data	12	26	12	6	18	10

Signal kinematics

- Kinematics sensitive to electroweak component
- Candidate distributions for differential cross section measurements with more data

W±W±jj: jet η distribution

Cross section likelihood

$$L(\sigma_{W^{\pm}W^{\pm}jj}, \alpha_{j}) = \prod_{i \in \{ee, \mu\mu, e\mu\}} \operatorname{Pois}(N_{i}^{\text{obs}}|N_{i, \text{tot}}^{\text{exp}}) \prod_{j \in \text{syst}} \operatorname{Gaus}(\alpha_{j}^{0}|\alpha_{j}, 1)$$
$$N_{i, \text{tot}}^{\exp}(\sigma_{W^{\pm}W^{\pm}jj}\alpha_{j}) = \mathcal{L} \cdot \sigma_{W^{\pm}W^{\pm}jj} \cdot A_{i} \cdot \varepsilon_{i}(\alpha_{j}) + \sum_{b} N_{i, b}(\alpha_{j})$$

- $\alpha_{\mbox{\scriptsize i}}
 ightarrow \mbox{nuisance parameters for systematic uncertainties}$
- A_i → relative acceptance for channel i (~ 1:2:1 for ee,eμ,μμ)
- $\epsilon_i \rightarrow$ efficiency for channel i
 - 56%, 72%, 77% for ee, eμ, μμ in Inclusive region
 - 57%, 73%, 83% for ee, eμ, μμ in VBS region

Fiducial region definition

Fiducial region: summary of selections

Two same-charge leptons (e, μ ; veto τ decays), p_{τ} > 25 GeV, $|\eta|$ < 2.5

- includes photons in a cone of radius ΔR =0.1 around the leptons

At least two jets $p_{\scriptscriptstyle T}$ > 30 GeV, $|\eta|$ < 4.5

- anti-k_⊤, R=0.4

$$\Delta R(II) = (\Delta \phi(II)^2 + \Delta \eta(II)^2)^{1/2} > 0.3$$

DR(I, jet) > 0.3

m(II) > 20 GeV

Missing Transverse Energy > 40 GeV

m(jj) > 500 GeV → Inclusive fiducial region

 $|\Delta y(jj)| > 2.4 \rightarrow VBS fiducial region$

anomalous Quartic Gauge Couplings

- Using electroweak W[±]W[±]jj fiducial cross section in VBS phase space to constrain aQGC
- Effective field theory approach

$$\mathcal{L} = \mathcal{L}_{SM} + \alpha_4 (\operatorname{tr}[V_{\mu}V_{\nu}])^2 + \alpha_5 (\operatorname{tr}[V_{\mu}V_{\mu}])^2$$

- Considering operators not already heavily constrained by trilinear gauge coupling limits
- K-matrix unitarization schema (arXiv:0806.4145) to protect against unitarity violation
 - implemented in WHIZARD generator
- Full detector simulation shows that efficiency variations as function of $\alpha_{_{4.5}}$ sub-dominant with respect to fiducial cross section increase

Broad resonance model

Resonance	σ	ϕ	ρ	f	t
$\Gamma[g^2M^2/(64\pi v^2)]$	6	1	$\frac{4}{3} \left(\frac{v^2}{M^2} \right)$	$\frac{1}{5}$	$\frac{1}{30}$
$\Delta\alpha_4[(16\pi\Gamma/M)(v^4/M^4)]$	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{5}{2}$	$-\frac{5}{8}$
$\Delta\alpha_5[(16\pi\Gamma/M)(v^4/M^4)]$	$\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{3}{4}$	$-\frac{5}{8}$	$\frac{35}{8}$

Table 1-31. Width Γ of the five different possible non- $SU(2)_c$ violating resonances for their decays into longitudinal EW gauge bosons, as well as their contributions to the anomalous quartic couplings parameters α_4 and α_5 .

Type of resonance	$ m LHC \ 300 \ fb^{-1}$	$ m LHC~3000~fb^{-1}$
scalar ϕ	$0.9 \mathrm{TeV}$	$1.3~{ m TeV}$
vector ρ	$1.2 \mathrm{TeV}$	$1.7 \mathrm{TeV}$
tensor f	$1.6 \mathrm{TeV}$	$2.3~{ m TeV}$

Table 1-32. 95% CL limits for the mass M of a broad resonance in simplified models obtained from limits on α_4 of Table 1-20 and using the widths of Table 1-31 with $\Gamma \sim M$.

 α_4 and α_5 . In Table 1-32 we provide limits on M based on the ATLAS limits on α_4 presented in Table 1-20 (assuming $\Gamma \sim M$, v = 0.246 TeV). The ATLAS limits on $f_{S,0}/\Lambda^4$ (see Table 1-22) can also be translated into limits on the mass M of a broad EW resonance ($\Gamma \sim M$) as follows (using Eq. 1.61):

$$M = \left(\frac{nc_R 16\pi}{f_{S,0}/\Lambda^4}\right)^{\frac{1}{4}} \tag{1.95}$$

where c_R are the contributions to $\Delta \alpha_4$ of Table 1-31 and n=8,16 for the WWWW and ZZWW case,

14 TeV cross section expectations

Process	$\sigma^{ m fid}$ @ 8 TeV	$\sigma^{ m fid}$ @ 14 TeV	Ratio 14 TeV / 8 TeV
electroweak $W^{\pm}W^{\pm}$ jj	1.83 fb	7.3 fb	4
strong $W^{\pm}W^{\pm}$ jj	0.74 fb	2.75 fb	4
strong $W^\pm Z$ jj	3.11 fb	15.7 fb	5

Madgraph, LO; 2 same-charge lep p_T > 15 GeV, $|\eta|$ < 5; at least two jets p_T > 30 GeV, $|\eta|$ < 5; m(jj) > 500 GeV

Exploring other VVjj processes

- WZjj, W+W-jj, ZZjj also become competitive and complementary
 - available data not enough to isolate electroweak component
 - Although already achieved evidence for explicit VBF Higgs contribution combining W[±]W[±]jj, ZZjj and γγjj channels

[Phys.Lett B 726 (2013) 88-119]

VBF Higgs results

- Latest results show 4.1σ evidence for VBF Higgs production
 - ATLAS-CONF-2014-009
 - Includes H $\rightarrow \tau\tau$ results (VBF carries most of the sensitivity)
- Excluding H \rightarrow tt, evidence for VBF Higgs production at 3.3 σ
 - Phys. Lett. B 726 (2013), pp. 88-119
 - combining WW, ZZ, γγ decay channels

